

Integration of the guiding-center equations in toroidal fields utilizing a local linearization approach

Michael Eder

PPPL, Theory seminar, 17 June 2021

- 1 Motivation
- 2 Derivation of integration method
- 3 Numerical solution
- Collisionless guiding-center orbits in 2D field
- 5 Collisionless guiding-center orbits in 3D field
- 6 Application I: Mono-energetic radial diffusion coefficient
- 7 Application II: Confinement of fusion alphas
- 8 Conclusion & Outlook

- 1 Motivation
- 2 Derivation of integration method
- 3 Numerical solution
- 4 Collisionless guiding-center orbits in 2D field
- 5 Collisionless guiding-center orbits in 3D field
- 6 Application I: Mono-energetic radial diffusion coefficient
- 7 Application II: Confinement of fusion alphas
- 8 Conclusion & Outlook

Motivation: A new orbit integration method

- 1. Physically correct long time orbit dynamics
- 2. Low sensitivity to noise in fields
- 3. Efficient box counting
- 4. Computational efficiency
 - Long-term goal:
 - Kinetic modelling of distribution function moments

Local Linearization Approach

- Linearization: Piecewise linear toroidal electromagnetic fields
- Mesh-based: 3D tetrahedral cells
- Quasi-geometric:
 - Formulation preserves non-canonical symplectic form
 - Series expansion in time-like orbit parameter
- Fortran code:
 - GORILLA: Guiding-center ORbit Integration with Local Linearization Approach

- 1 Motivation
- 2 Derivation of integration method
- 3 Numerical solution
- Collisionless guiding-center orbits in 2D field
- Collisionless guiding-center orbits in 3D field
- 6 Application I: Mono-energetic radial diffusion coefficient
- 7 Application II: Confinement of fusion alphas
- 8 Conclusion & Outlook

Guiding-center approx. for charged particle orbit

Lagrangian for charged-particle motion in an electromagnetic field:

$$\mathcal{L}(\mathbf{x}, \dot{\mathbf{x}}; t) = \frac{m}{2} |\dot{\mathbf{x}}|^2 + \frac{e}{c} \dot{\mathbf{x}} \cdot \mathbf{A}(\mathbf{x}, t) - e\Phi(\mathbf{x}, t) \quad (1)$$

Particle position via guiding-center

Fundamentals of Plasma Physics, Dr. Paul Bellan, Cambridge Press 2006

$$\mathbf{x} \equiv \mathbf{x}_{gc} + \rho \tag{2}$$

Guiding-center phase-space Lagrangian:¹

$$\mathcal{L}_{gc}\left(\mathbf{x}_{gc}, J_{\perp}, \phi, w\right) = \left[\frac{e}{c}\mathbf{A}\left(\mathbf{x}_{gc}\right) + mv_{\parallel}\left(\mathbf{x}_{gc}, J_{\perp}, w\right) \frac{\mathbf{B}\left(\mathbf{x}_{gc}\right)}{B\left(\mathbf{x}_{gc}\right)}\right] \cdot \dot{\mathbf{x}}_{gc} - J_{\perp}\dot{\phi} - w \quad (3)$$

¹Littlejohn 1983; Cary and Brizard 2009.

Formulation of orbit integration method

 Use the Hamiltonian form of guiding center equations² in curvilinear coordinates,

$$\dot{x}^{i} = \frac{v_{\parallel} \varepsilon^{ijk}}{\sqrt{g} B_{\parallel}^{*}} \frac{\partial A_{k}^{*}}{\partial x^{j}}, \qquad A_{k}^{*} = A_{k} + \frac{v_{\parallel}}{\omega_{c}} B_{k}, \tag{4}$$

$$v_{\parallel} = \sigma \left(\frac{2}{m_{\alpha}} \left(\mathbf{w} - \mathbf{J}_{\perp} \omega_{c} - \mathbf{e}_{\alpha} \Phi \right) \right)^{1/2},$$
 (5)

$$\frac{v_{\parallel}^2}{2} = U, \qquad U = U(x^j).$$
 (6)

- Treat v_{\parallel} as an independent variable
- Replace time with orbit parameter au: $\mathrm{d} t = \sqrt{g} B_{\parallel}^* \mathrm{d} au$

²Boozer 1980; Littlejohn 1983.

Formulation of orbit integration method

Set of four equations:

$$B_{\parallel}^* \sqrt{g} \dot{x}^i = \frac{\mathrm{d}x^i}{\mathrm{d}\tau} = \varepsilon^{ijk} \left(\mathbf{v}_{\parallel} \frac{\partial A_k}{\partial x^j} + 2U \frac{\partial}{\partial x^j} \frac{B_k}{\omega_c} + \frac{B_k}{\omega_c} \frac{\partial U}{\partial x^j} \right)$$

$$B_{\parallel}^* \sqrt{g} \dot{\mathbf{v}}_{\parallel} = \frac{\mathrm{d}\mathbf{v}_{\parallel}}{\mathrm{d}\tau} = \varepsilon^{ijk} \frac{\partial U}{\partial x^i} \left(\frac{\partial A_k}{\partial x^j} + \mathbf{v}_{\parallel} \frac{\partial}{\partial x^j} \frac{B_k}{\omega_c} \right)$$
(7)

Approximate A_k , B_k/ω_c , ω_c and Φ by linear functions in spatial cells:

$$\frac{\mathrm{d}z^{i}}{\mathrm{d}\tau} = a_{k}^{i}z^{k} + b^{i}$$
 (8)
$$z^{i} = x^{i} \text{ for } i = 1, 2, 3$$
$$z^{4} = v_{\parallel}$$

3D field aligned grid: tetrahedral cells I

 (x^1, x^2, x^3) is aligned to coordinate system.

E.g.,
$$(x^1, x^2, x^3) = (s, \vartheta, \varphi)$$
 or (R, φ, Z)

3D field aligned grid: tetrahedral cells II

Aligned to symmetry flux coordinates: $(x^1, x^2, x^3) = (s, \theta, \varphi)$

Physically correct long time orbit dynamics

- Linear approximation of field quantities does not destroy the Hamiltonian nature of the original guiding center equations.
- Non-canonical Hamiltonian form of linear ODE set

$$\frac{\mathrm{d}z^{i}}{\mathrm{d}\tau} = \Lambda^{ij} \frac{\partial H}{\partial z^{j}}, \qquad \Lambda^{ij}(\mathbf{z}) = \left\{z^{i}, z^{j}\right\}_{\tau}, \tag{9}$$

with Hamiltonian $H(\mathbf{z}) = v_{\parallel}^2/2 - U(\mathbf{x})$ and antisymmetric Poisson matrix $\Lambda^{ij}(\mathbf{z})$.

Physically correct long time orbit dynamics

- Liouville's theorem is fulfilled
 - Coordinate set:

$$\mathbf{y} = (\mathbf{x}, \mathbf{J}_{\perp}, \phi, \mathbf{v}_{\parallel})$$

Phase space Jacobian³:

$$J = rac{\partial (\mathbf{r}, \mathbf{p})}{\partial (\mathbf{x}, J_{\perp}, \phi,
u_{\parallel})} = rac{m_{lpha} \mathbf{e}_{lpha}}{c} \sqrt{g} \mathcal{B}_{\parallel}^*$$

Divergence of the phase space flow velocity:

$$\frac{1}{J}\frac{\partial \left(J\dot{y}^{i}\right)}{\partial v^{i}}\equiv0$$

Relation holds for piecewise linear approximation.

³Littlejohn 1983.

Properties of orbit integration method

Physically correct long time orbit dynamics

- preserved total energy
- preserved magnetic moment
- preserved phase space volume

Computationally efficient

- relaxed requirement to orbit shape
- lowest order approximation for time evolution
- locally linear ODE set with constant coefficients

Insensitive to noise in fields

- 1 Motivation
- 2 Derivation of integration method
- 3 Numerical solution
- 4 Collisionless guiding-center orbits in 2D field
- Collisionless guiding-center orbits in 3D field
- 6 Application I: Mono-energetic radial diffusion coefficient
- 7 Application II: Confinement of fusion alphas
- 8 Conclusion & Outlook

Numerical solution

Locally linear ODE set:

$$rac{\mathrm{d}\mathbf{z}(au)}{\mathrm{d} au} = \hat{\mathbf{a}}\cdot\mathbf{z} + \mathbf{b}$$

- â and b are constant inside cells.
- Formal solution:

lution:
$$\mathbf{z}(\tau) = \mathbf{z}_0 + \sum_{k=0}^{K} \frac{\tau^k}{k!} \left(\hat{\mathbf{a}}^{k-1} \cdot \mathbf{b} + \hat{\mathbf{a}}^k \cdot \mathbf{z}_0 \right) \tag{10}$$

Exact for $K \to \infty$

Orbit intersections with tetrahedra faces

3D tetrahedral cell is depicted as a **2D triangle** in the interest of simplification.

Runge-Kutta vs. Polynomials

Runge-Kutta (GORILLA RK4):

- The ODE set is numerically solved via Runge-Kutta 4 in an iterative scheme.
- Iterative scheme uses Newton's method and a quadratic analytic estimation for the initial step length.

Analytic Polynomial (GORILLA Poly):

- Truncation of series at K = 2, 3, 4
- Algebraic equations: approximate solutions of various orders in Larmor radius.

Dwell time & integrals of velocity powers

- Dwell time of particle inside spatial cell
- Analytic formulation of parallel velocity

$$v_{\parallel}(au) = e^{lpha au} \left(v_{\parallel,0} + rac{eta}{lpha}
ight) rac{eta}{lpha}$$

• Analytic formulation of velocity power integrals of $v_{\parallel}, v_{\parallel}^2$ and v_{\parallel}^2

Advantage:

Straightforward computation of spatial distributions within Monte Carlo procedures.

- 1 Motivation
- 2 Derivation of integration method
- 3 Numerical solution
- 4 Collisionless guiding-center orbits in 2D field
- 5 Collisionless guiding-center orbits in 3D field
- 6 Application I: Mono-energetic radial diffusion coefficient
- 7 Application II: Confinement of fusion alphas
- 8 Conclusion & Outlook

Poincare plots of guiding center orbits

- Quasi-geometric integration: Not exact orbit shape.
- Axisymmetric (2D): Canonical toroidal angular momentum is preserved. ($N_{\text{mappings}} = 10^7$)

Canonical toroidal angular momentum p_{φ}

- Passing high energy ion with 300 keV
- Polynomial order K = 2, 3, 4 and exact orbit (RK 4/5)

Axisymmetric noise of electrostatic and vector potential

 $\xi = 0 \dots 1$, e.g. $\Phi^{\mathsf{noisy}} = \Phi(1 + \epsilon_{\Phi} \xi)$

- Similar orbit shape (compared to unperturbed orbit)
- Canonical toroidal angular momentum is preserved.

- 1 Motivation
- 2 Derivation of integration method
- 3 Numerical solution
- 4 Collisionless guiding-center orbits in 2D field
- 5 Collisionless guiding-center orbits in 3D field
- 6 Application I: Mono-energetic radial diffusion coefficient
- 7 Application II: Confinement of fusion alphas
- 8 Conclusion & Outlook

Artifact: Numerical field line diffusion

 Test case: 2D field with harmonic perturbation of vector potential

$$A_{\varphi} = \psi_{\text{pol}}(s)(1 + \varepsilon_{M}\cos(m_{0}\vartheta + n_{0}\varphi)). \tag{11}$$

- Due to the linearization of fields for 3D configurations,
 KAM surfaces can be destroyed.
 - $\rightarrow \text{ergodic passing particle orbit}$
- Numerical diffusion is below the level of classical electron diffusion (perturbed tokamak)
 - ightarrow Diffusion can be safely ignored.

Artifact: Numerical field line diffusion

Poincaré plots of field lines

GORILLA Poly: 34 equidistant flux surfaces $N_{\vartheta}=N_{\varphi}=30$ K=2

Solid red line shows a cross-section of one exact corrugated flux surface.

Stellarator field: Poincaré projection

- Trapped ion with 3 keV
- Poloidal projection at $v_{\parallel}=0$ switching sign from to +

Stellarator field: Parallel adiabatic invariant J_{\parallel}

- Violation of Hamiltonian structure for K = 2 (attractor)
- Convergence with grid size: J_{\parallel} averaged over 10⁵ bounce times (in **b**)

- 1 Motivation
- 2 Derivation of integration method
- 3 Numerical solution
- 4 Collisionless guiding-center orbits in 2D field
- 5 Collisionless guiding-center orbits in 3D field
- 6 Application I: Mono-energetic radial diffusion coefficient
- 7 Application II: Confinement of fusion alphas
- 8 Conclusion & Outlook

Mono-energetic radial diffusion coefficient D_{11}

• D_{11} as a function of collisionality ν^* is evaluated with standard Monte Carlo method.⁴ (10 000 test particles)

$$D_{11} = \frac{1}{2t} \langle (s(t) - s_0)^2 \rangle. \tag{12}$$

- Collisions are realized by pitch angle scattering (Lorentz scattering operator).
- Normalization:

$$u^* = \frac{R_0 \nu_c}{\iota V}$$
 (collisionality)
 $v_E^* = \frac{cE_r}{vB_0}$ (Mach number)

⁴Boozer and Kuo-Petravic 1981.

Mono-energetic radial diffusion coefficient D_{11}

CPU benchmark

- Accuracy vs. efficiency
 - Accuracy: Relative error of D₁₁
 - **Efficiency:** Relative CPU time for pure orbit integration

Boundary conditions:

- Fixed collisionality $u^* = 10^{-3}$ and Mach number $u_{E}^* = 10^{-3}$
- Number of test particles: 30 000
- Reference integrators:
 - adaptive Runge-Kutta 4/5 (rel. tolerance = 10⁻⁹)
 - Runge-Kutta 4

CPU benchmark for D_{11}

GORILLA: Angular grid size $N_{\vartheta} \times N_{\varphi}$ varied from 8 \times 8 to 60 \times 60.

Reference computation: adaptive Runge-Kutta 4/5 (rel. tol. = 10⁻⁹)

Compared integrators:

adaptive RK 4/5 (\times) (various rel. tol.)

Runge-Kutta 4: (⋆)

GORILLA Poly:

 $K = 2 (\lozenge), K = 3$ (\square) and $K = 4 (\nabla)$

(□) and n = + (v)

GORILLA RK4: (△)

- Derivation of integration method
- Numerical solution

- Application I: Mono-energetic radial diffusion coefficient
- Application II: Confinement of fusion alphas
- Conclusion & Outlook

Confined fraction f_c of 3.5 MeV fusion alphas

- Numerical diffusion (due to linearization) strongly scales with Larmor radius.
- Numerical diffusion affects confined fraction f_c .

Relative error of f_c @ t = 0.01 s vs. grid size

- Numerical diffusion scales inversely with angular grid size
- Numerical diffusion is (almost) not affected by radial grid size

CPU benchmark for f_c

Reference computation: adaptive Runge-Kutta 4/5 (rel. tol. = 10⁻⁹)

Compared integrators: adaptive RK 4/5 (×) (various rel. tol.)

GORILLA Poly: $K = 2 \ (\lozenge), K = 3 \ (\square)$ and $K = 4 \ (\triangledown)$

GORILLA: Angular grid size $N_{\vartheta} \times N_{\varphi}$ varied from 28 × 28 to 200 × 200.

- 1 Motivation
- 2 Derivation of integration method
- 3 Numerical solution
- 4 Collisionless guiding-center orbits in 2D field
- Collisionless guiding-center orbits in 3D field
- 6 Application I: Mono-energetic radial diffusion coefficient
- 7 Application II: Confinement of fusion alphas
- 8 Conclusion & Outlook

Benefits of the integration method

- Computational efficiency (up to 10x faster than RK4)
- Physically correct long time orbit dynamics
 - preserved total energy
 - preserved magnetic moment
 - preserved phase space volume
- Formulation in general curvilinear coordinates
- Low sensitivity to noise in electromagnetic fields
- Straightforward computation of spatial distributions within Monte Carlo procedures
 - dwell time and velocity power integrals in spatial cells

Limitations of the integration method

- Implemented only for (quasi-)static electromagnetic fields
- Artificial chaotic diffusion in 3D fields
 - Magnetic flux coordinates strongly reduce chaos.
 - Chaotic diffusion strongly scales with Larmor radius.
 - Chaotic diffusion inversely scales with angular grid size.
 - Thermal particles: Negligibly small through moderate grid refinement.
 - Fusion alphas: Chaotic diffusion affects confined fraction.

Outlook & proposed project

- Global Monte Carlo computations of parallel equilibrium current density, charge density and pressure tensor distributions
- Implementation of correct time dynamics

$$rac{\mathrm{d}t}{\mathrm{d} au} = \left(\sqrt{g}B_{\parallel}^*
ight)^{(L)}$$

Fast drift-kinetic **electron** solver for **PIC** codes, e.a. XGC

Thank you for your attention!

Documentation & Code:

- Eder et al., Physics of Plasmas 27, 122508 (2020) https://doi.org/10.1063/5.0022117
- Fortran code available on GitHub https://github.com/itpplasma/GORILLA Publication planned at Journal of Open Source Software

Bibliography I

Boozer, Allen H. (May 1980). Guiding center drift equations. The Physics of Fluids 23.5, pp. 904-908. ISSN: 0031-9171. DOI: 10.1063/1.863080. URL: https://aip.scitation.org/doi/10.1063/1.863080 (visited on 04/29/2020).

Boozer, Allen H. and Gioietta Kuo-Petravic (May 1981). Monte Carlo evaluation of transport coefficients. The Physics of Fluids 24.5, pp. 851-859. ISSN: 0031-9171. DOI: 10.1063/1.863445. URL: https://aip.scitation.org/doi/10.1063/1.863445 (visited on 04/29/2020).

Cary, John R. and Alain J. Brizard (May 2009). Hamiltonian theory of guiding-center motion. en. Reviews of Modern Physics 81.2, pp. 693-738. ISSN: 0034-6861, 1539-0756. DOI: 10.1103/RevModPhys.81.693. URL:

https://link.aps.org/doi/10.1103/RevModPhys.81.693 (visited on 08/17/2020).

Bibliography II

Littlejohn, Robert G. (Feb. 1983). Variational principles of guiding centre motion. en.

Journal of Plasma Physics 29.1, pp. 111-125. ISSN: 1469-7807, 0022-3778. DOI: 10.1017/S002237780000060X. URL:

https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/variational-principles-of-guiding-centre-motion/8FF3F0D2C6ECB02E983AE506DC40684F (visited on 04/29/2020).